Bayesian hierarchical models for linear networks
نویسندگان
چکیده
منابع مشابه
Bayesian Designs for Hierarchical Linear Models
Two Bayesian optimal design criteria for hierarchical linear models are discussed – the ψβ criterion for the estimation of individual-level parameters β, and the ψθ criterion for the estimation of hyperparameters θ. While the ψβ criterion involves only the specification of the treatments, the ψθ criterion involves the specification of both the treatments and the covariates. We focus on a specif...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملBayesian hierarchical linear mixed models for additive smoothing splines
Bayesian hierarchical models have been used for smoothing splines, thin-plate splines, and L-splines. In analyzing high dimensional data sets, additive models and backfitting methods are often used. A full Bayesian analysis for such models may include a large number of random effects, many of which are not intuitive, so researchers typically use noninformative improper or nearly improper priors...
متن کاملAnalysis of Hierarchical Bayesian Models for Large Space Time Data of the Housing Prices in Tehran
Housing price data is correlated to their location in different neighborhoods and their correlation is type of spatial (location). The price of housing is varius in different months, so they also have a time correlation. Spatio-temporal models are used to analyze this type of the data. An important purpose of reviewing this type of the data is to fit a suitable model for the spatial-temporal an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Statistics
سال: 2020
ISSN: 0266-4763,1360-0532
DOI: 10.1080/02664763.2020.1864814